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An exact solution of the unsteady free-convection boundary-layer flow of an incompressible fluid past an infi-
nite vertical plate with the flow generated by Newtonian heating and impulsive motion of the plate is pre-
sented. The resulting governing equations are nondimensionalized and their solutions are obtained in a closed
form with the help of the Laplace transform technique. A parametric study of the roles of all involved pa-
rameters is conducted and a representative set of numerical results for the velocity, temperature, and skin
friction is illustrated graphically. The physical aspects of the problem are discussed.

Introduction. The study of unsteady boundary layer is useful in several physical problems such as flow over
a helicopter in translation motion, flow over the blades of turbines and compressors, flow over the aerodynamic sur-
faces of vehicles in manned flight, etc. The unsteadiness in the flow field is caused by either time dependent or im-
pulsive motion of an external stream (or of the body surface). When the fluid motion over a body is impulsive, the
inviscid flow in this range is developed instantaneously but the viscous layer near the body is developed slowly and
becomes a fully developed steady-state viscous flow after a certain instant of time. Unsteady laminar free convection
past an infinite vertical plate for the Prandtl number Pr = 1.0 in the case of a step change in the wall temperature
with time was considered by Illingworth [1]; for Pr ≠ 1.0 he derived the solution in integral form. Siegel [2] studied
an unsteady free-convection flow past a semi-infinite vertical plate with a step change in the wall temperature or sur-
face heat flux by the momentum integral method. He was the first to point out that the initial behavior of the tem-
perature and velocity fields for a semi-infinite vertical flat plate is the same as for a double-infinite vertical flat plate,
i.e., the temperature field is the same as in the solution of an unsteady one-dimensional heat-conduction problem.
Soundalgekar [3] was the first to present an exact solution to the flow of a viscous incompressible fluid past an im-
pulsively started infinite vertical plate by the Laplace transform technique. An excellent review of existing theoretical
and experimental works can be found in the books by Stuart [4], Telionis [5], and Pop [6]. Theoretical studies on the
laminar natural convection heat transfer from a vertical plate continue to attract attention due to their industrial and
technological applications. Martynenko et al. [7] investigated the laminar free convection from a vertical plate main-
tained at a constant temperature which is equal to the temperature of the surrounding stationary fluid. Perdikis [8]
studied free-convection effects on flow past a moving plate. Camargo et al. [9] presented a numerical study of natural
convective cooling. Recently Raptis and Perdikis [10] studied the free-convection flow of water near a moving plate.
The unsteady free-convection flow with heat flux and accelerated boundary motion was investigated by Chandran et al.
[11]. Das et al. [12] analyzed the problem of flow with periodic temperature variation, and Muthucumaraswamy [13]
considered natural convection with a variable surface heat flux. Recently, Chandran [14] studied natural convection
with a ramped wall temperature.

In all the studies cited above, the flow is driven either by a prescribed surface temperature or by a prescribed
surface heat flux. Here, a somewhat different driving mechanism for unsteady free convection along a vertical surface
is considered, where it is assumed that the flow is also set up by Newtonian heating from the surface. Heat-transfer
characteristics are dependent on the thermal boundary conditions. In general, there are four common heating processes
representing the wall-to-ambient temperature distribution, prescribed surface heat flux distribution, and conjugate condi-
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tions, where heat transfer through a bounding surface of finite thickness and finite heat capacity is specified. The in-
terface temperature is not known a priori but depends on the intrinsic properties of the system, namely, the thermal
conductivities of the fluid and solid. In Newtonian heating, the rate of heat transfer from the bounding surface with a
finite heat capacity is proportional to the local surface temperature, and it is usually termed conjugate convective flow.
This situation occurs in many important engineering devices, for example:

(a) in heat exchangers, where conduction in the solid tube wall is greatly influenced by convection in the
fluid flowing past it;

(b) in conjugate heat transfer around fins, where conduction within the fin and convection in the fluid sur-
rounding it must be simultaneously analyzed in order to obtain the vital design information;

(c) in convective flow setups, where the bounding surfaces absorb the heat of solar radiation.
Therefore we conclude that the conventional assumption of the absence of interrelation between coupled conduction-
convection effects is not always realistic, and this interrelation must be considered when evaluating the conjugate heat
transfer processes in many practical engineering applications.

The Newtonian heating condition has only recently been used in studying convective heat transfer. Merkin
[15] was the first to consider the free-convection boundary layer over a vertical flat plate immersed in a viscous fluid,
whereas the authors of [16—18] considered the cases of vertical and horizontal surfaces embedded in a porous me-
dium.

The studies mentioned in [15—18] deal with steady free convection. The present paper studies an unsteady
free-convection boundary-layer flow near a flat vertical plate with Newtonian heating. The solution is obtained in
closed form using the Laplace transform technique [19]. The literature concerning this subject can be found in the
books by Slattery [20] and Carslaw and Jaeger [21].

Mathematical Analysis. We consider an unsteady free-convective flow of a viscous incompressible fluid past
an impulsively started infinite vertical plate with Newtonian heating. The x* axis is taken along the plate in the verti-
cal upward direction and y* axis is chosen normal to the plate. Initially, for time t* ≤ 0, the plate and fluid are at the
same temperature T∞

∗  under a stationary condition. When t* > 0, an impulsive motion in the vertical upward direction
against gravitational field with a characteristic velocity Uc is imparted to the plate. It is assumed that the rate of heat
transfer from the surface is proportional to the local surface temperature T*. Since the plate is considered infinite in
the x* direction, all physical variables are independent of x* and are functions of y* and t* only. With the use of the
Boussinesq approximation, the flow is governed by the following equations:
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We introduce the nondimensional quantities
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Substituting (4) into Eqs. (1)—(3) leads to the following nondimensional equations:
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The initial and boundary conditions are

t ≤ 0 :   u = 0 ,   θ = 0   for  all  y ;

t > 0 :   u = 1 ,   
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 = − (1 + θ)   at  y = 0 ,
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(7)

The energy equation (6) is uncoupled with the momentum equation (5). One can therefore derive the tempera-
ture solution θ(y, t), whereupon the solution u(y, t) can also be obtained, using the Laplace transform technique.

Solution for Pr ≠ 1. In this case the solutions look like
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where a = 
Gr

Pr − 1
, erfc (x) is the complementary error function defined as

erfc (x) = 1 − erf (x) ,   erf (x) = 
2
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 ∫ 
0

x

exp (− η2) dη .

Solution at Pr = 1. We see that the solution for the velocity given by Eq. (9) is not valid for fluids at a
Prandtl number equal to unity. As the Prandtl number is a measure of the relative importance of the viscosity and
thermal conductivity of the fluid, the case Pr = 1 corresponds to those fluids whose momentum and thermal boundary
layer thicknesses are of the same order of magnitude. It may be noted that the solution for the temperature θ(y, t) fol-
lows from Eq. (8) when Pr = 1. However, in the case of u(y, t) the solution has to be re-derived starting from Eqs.
(5) and (6). The solution obtained is
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Skin friction. Knowing the velocity field, we now obtain the skin friction which is given as
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and by virtue of Eq. (4) this equation is reduced to
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at Pr = 1
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Nusselt number. Another purpose of this study is to understand the effects of t and Pr on the Nusselt number.
In nondimensional form, the heat transfer coefficient is given as
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Discussion and Conclusions. In order to discuss the effect of various physical parameters on the velocity
field, thermal boundary layer, skin friction (shear stress), and the coefficient of heat transfer on the wall, the numerical
calculation of the solutions obtained in the preceding section was carried out. The results are presented in Figs. 1—5.
The values of the Prandtl number are taken equal to 0.71, 1.0, and 7.0, which correspond to air, electrolyte solution,
and water, respectively.

Fig 2. Velocity profiles at Pr = 0.71 (dotted curves) and 1 (solid curves): 1)
Gr = 0.5 and t = 0.9; 2) 0.5 and 2; 3) 1 and 0.9; 4) 1 and 2.

Fig 3. Velocity profiles at Pr = 7 and Gr = 0.5 (1 and 1′) and Gr = 1 (2 and
2′): 1, 2) t = 2; 1′ 2′) t = 0.9.

Fig. 1. Temperature profiles at Pr = 0.71 (1 and 1′), 1 (2 and 2′), and 7 (3 and
3′): 1, 2, 3) t = 2; 1′, 2′, and 3′) t = 0.9.
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The effect of the Prandtl number on the temperature profiles θ(y, t) may be analyzed from Fig. 1. It is in-
ferred that the thickness of the thermal boundary layer is the greatest for air (Pr = 0.71), when the temperature distri-
bution across the thermal boundary layer is less uniform as compared to water (Pr = 7.0) and electrolyte solution (Pr
= 1.0). From this figure we notice that an increase in the Prandtl number results in a decrease of temperature. The
reason is that smaller values of the Prandtl number are equivalent to increasing thermal conductivity, and therefore
heat is capable of diffusing away from the heated surface more rapidly than at higher values of Pr. Thus the tempera-
ture falls more rapidly for water than for air and electrolyte solution. The temperature maximum occurs in the vicinity
of the plate and then the temperature asymptotically approaches zero in the free-stream region. Furthermore it is found
that the thermal boundary layer thickens with time.

Figure 2 presents the velocity profiles u(y, t) for the electrolyte solution and air inside the boundary layer for
two values of the Grashof number and time, while Fig. 3 depicts these profiles for water. Figure 2 shows that the
fluid velocity increases with the Grashof number. Physically, this is possible because with increase in the Grashof
number the contribution from the buoyancy near the plate becomes significant, and hence a rise in the velocity in this
range is observed. For higher values of Gr, the fluid velocity overshoots the plate velocity in the regions close to the
boundary, and this overshooting is more pronounced for fluids with lower Prandtl number. The thickness of the mo-
mentum boundary layer is also greater for these fluids. The reason for such a behavior is the fact that an increase in
the Prandtl number is due to an increase in the fluid viscosity, which makes the fluid thick, thus decreasing its veloc-
ity. In the case of water (see Fig. 3), the velocity decreases from the plate velocity to the zero free-stream value. From
this figure it is also seen that the water velocity decreases with increasing Gr. Further, Figs. 2 and 3 show that the
thickness of the momentum boundary layer increases with time.

Figure 4 displays the Nusselt number Nu vs. t. This figure shows that this number increases with Pr and de-
creases with increasing t. It should be noted that heat is transferred from the surface to the medium.

The influence of the buoyancy parameter Gr and the Prandtl number on the time dependence of the skin fric-
tion τ is presented in Fig. 5. It is seen that the skin friction falls with increasing Grashof number and time. However,
τ increases with Pr.

NOTATION

Cp, specific heat at constant pressure; g, acceleration due to gravity; Gr, Grashof number; h, heat transfer co-
efficient; k, thermal conductivity; Nu, Nusselt number; Pr, Prandtl number; T*, temperature; T∞

∗ , ambient temperature;

Fig. 4. The Nusselt number as a function of time at Pr = 0.71 (1), 1 (2), and
7 (3).

Fig. 5. Skin friction as a function of time for Pr = 0.71 (1 and 1′), 1 (2 and
2′), and 7 (3 and 3′): 1, 2, 3) Gr = 0.5; 1′, 2′, 3′) Gr = 1.
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t, nondimensional time; u, nondimensional velocity along x direction; x and y, nondimensional Cartesian coordinates
along the plate and normal to it; β, coefficient of volumetric expansion; θ, nondimensional temperature; µ and ν, vis-
cosity and kinematic viscosity; ρ, fluid density; τ, nondimensional skin friction. Superscripts: *, dimensional quantities.
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